
Integrating	OAuth	with	AI	Agents	and	the	A2A	Protocol	for	Secure	Authentication	and	Authorization

Executive	Summary

Securing	autonomous	AI	agents	within	distributed	systems	is	a	critical	challenge,	driven	by	the	imperative	for	robust	trust,	accountability,	and	compliance	with
evolving	mandates	like	zero-trust	principles.	This	report	proposes	the	strategic	integration	of	established	OAuth	2.0	infrastructure	with	emerging	Agent2Agent	(A2A)
protocols	to	support	secure,	scalable,	and	auditable	agent	communication.	It	outlines	technical	strategies	for	implementing	robust	machine-to-machine	(M2M)	OAuth
flows,	defining	granular	permissions,	and	enabling	verifiable	authenticated	delegation.	The	report	further	explores	advanced	patterns	such	as	Dynamic	Client
Registration	(DCR),	OAuth	Token	Exchange,	and	application-layer	security,	offering	a	roadmap	for	building	resilient,	auditable,	and	secure	multi-agent	architectures
that	can	scale	with	confidence.

1.	Introduction:	Securing	the	Autonomous	AI	Agent	Ecosystem

1.1	The	Rise	of	AI	Agents	and	Multi-Agent	Systems

The	landscape	of	artificial	intelligence	is	rapidly	evolving	beyond	static	models	to	dynamic,	autonomous	entities	known	as	AI	agents.	An	agent	is	defined	as	a	virtual
(or	physical)	autonomous	entity	that	comprehends	its	environment	and	acts	upon	it,	often	communicating	with	other	agents	to	achieve	common	goals	that	a	single
agent	could	not	accomplish	alone.1	Unlike	simpler	AI	assistants	or	bots,	AI	agents	possess	reasoning,	planning,	and	memory	capabilities,	demonstrating	a	higher
degree	of	autonomy	to	make	decisions,	learn,	and	adapt.2	These	capabilities	are	significantly	enhanced	by	generative	AI	and	foundation	models,	allowing	agents	to
process	multimodal	information	and	engage	in	complex,	multi-step	actions.2

The	emergence	of	multi-agent	systems,	where	multiple	AI	agents	collaborate	or	compete	towards	shared	or	individual	objectives,	amplifies	the	need	for	sophisticated
communication	and	coordination	mechanisms.2	These	systems	can	simulate	complex	human	behaviors	and	leverage	diverse	agent	capabilities	to	tackle	intricate
tasks.2	The	term	â€œagentic	workflowsâ€​	refers	to	these	complex,	multi-step	processes	orchestrated	by	autonomous	AI	agents,	often	involving	interactions	with	other
agents,	tools,	and	external	services.

1.2	The	Identity	Challenge	for	Autonomous	Agents

Traditional	Identity	and	Access	Management	(IAM)	frameworks,	such	as	OAuth	and	SAML,	were	primarily	designed	for	human	users	or	static	machine	identities.3
Their	inherent	assumption	is	a	predictable	interaction	model,	often	involving	direct	user	consent	or	pre-configured	machine	credentials.	However,	the	defining
characteristics	of	AI	agentsâ€”their	autonomy,	decision-making	abilities,	learning	capacity,	and	adaptability	2â€”fundamentally	alter	the	concept	of	a	â€œprincipalâ€​
in	security.	An	agentâ€™s	identity	is	not	merely	a	static	credential	but	must	reflect	its	dynamic	state,	evolving	capabilities,	and	the	specific	authority	delegated	to	it.
This	shift	from	human-driven	or	static	machine	processes	to	autonomous,	dynamic	agents	necessitates	a	re-evaluation	and	adaptation	of	existing	identity	paradigms	to
support	these	new	forms	of	digital	actors,	as	traditional	IAM	models,	while	foundational,	are	inherently	limited	in	addressing	the	unique	requirements	of	these
intelligent	entities.3	The	core	challenge	extends	beyond	simply	authenticating	a	machine	to	authenticating	an	intelligent,	autonomous	entity	that	can	act	independently
or	on	behalf	of	others,	requiring	a	more	nuanced	approach	to	delegation	and	authorization.

The	concept	of	agents	performing	tasks	â€œon	behalf	of	usersâ€​	2	introduces	a	critical	security	dimension:	authenticated	delegation.	It	is	insufficient	for	an	agent
merely	to	prove	its	own	identity;	it	must	also	cryptographically	prove	who	authorized	it	and	what	it	is	permitted	to	do	within	that	delegated	authority.4	This
requirement	goes	significantly	beyond	typical	machine-to-machine	(M2M)	authentication,	where	the	machine	itself	is	often	the	primary	principal.	The	necessity	for
authenticated	delegation	directly	leads	to	a	demand	for	robust	auditability.4	Every	action	undertaken	by	an	agent	must	be	traceable	back	to	its	origin,	including	the
human	delegator	and	the	precise	permissions	granted.	This	ensures	accountability	within	highly	autonomous	and	distributed	systems,	effectively	mitigating	risks
associated	with	scope	misalignment	or	resource	abuse.4

1.3	Report	Objectives	and	Scope

This	report	aims	to	provide	a	comprehensive	and	practical	guide	for	organizations	seeking	to	integrate	their	existing	OAuth	services	with	AI	agents	and	the	emerging
A2A	protocol.	It	will	detail	the	technical	considerations,	best	practices,	and	advanced	patterns	necessary	to	establish	secure,	scalable,	and	auditable	authentication	and
authorization	for	autonomous	AI	agents.

2.	Unique	Identity	Needs	of	AI	Agents

2.1	Core	Characteristics	and	Their	Security	Implications

AI	agents	are	sophisticated	software	systems	that	leverage	artificial	intelligence	to	pursue	goals	and	complete	tasks	on	behalf	of	users.2	Key	characteristics	that
differentiate	them	from	simpler	bots	or	assistants	include:

Autonomy:	AI	agents	exhibit	the	highest	degree	of	autonomy,	capable	of	operating	and	making	decisions	independently	to	achieve	a	goal.2	This	requires
dynamic	authorization	policies	and	mechanisms	for	real-time	privilege	adjustment.
Reasoning,	Planning,	and	Memory:	They	demonstrate	capabilities	for	reasoning,	planning,	and	maintaining	context	through	various	memory	types	(short-
term,	long-term,	consensus,	episodic),	allowing	them	to	learn	from	experiences	and	adapt	over	time.2	Their	identity	must	support	context	retention,	learning
from	past	interactions,	and	evolving	capabilities.
Communication	and	Collaboration:	Agents	are	typically	designed	to	communicate	with	other	agents	within	the	same	system	to	achieve	common	goals	that	a
single	agent	could	not	accomplish	alone.1	This	demands	secure,	interoperable	agent-to-agent	authentication	and	authorization.
Goal-Oriented	and	Proactive:	Their	primary	purpose	is	to	autonomously	and	proactively	perform	complex,	multi-step	actions.2	This	necessitates	robust
delegation	of	authority	and	granular	permissions	for	specific	tasks.
Multimodal	Capacity:	Enabled	by	generative	AI	and	foundation	models,	agents	can	process	and	reason	with	multimodal	information	such	as	text,	voice,
video,	audio,	and	code	simultaneously.2	The	identity	system	must	support	diverse	data	types	and	interaction	modalities	for	access	control.
Delegation:	Agents	pursue	goals	and	complete	tasks	on	behalf	of	users.2	This	requires	verifiable	â€œauthenticated	delegationâ€​	from	human	users	or	other
agents,	with	clear	accountability.4

2.2	Why	Traditional	Identity	Models	Fall	Short	for	Agents

Traditional	identity	management	systems	like	OAuth	and	SAML,	while	foundational	for	human	users	and	static	machine	identities,	exhibit	limitations	when	applied	to
the	dynamic	world	of	AI	agents.3	These	protocols	are	primarily	designed	for	static	permissions	assigned	to	human	users	and	applications	with	well-defined	scopes.
However,	AI	agents	require	more	granular	and	adaptive	access	control	mechanisms,	as	their	permissions	may	need	to	change	dynamically	based	on	contextual	factors
such	as	risk	levels,	mission	objectives,	or	real-time	data	analysis.3

SAML,	with	its	reliance	on	XML-based	assertions	and	static	session-based	authentication,	is	less	suited	for	AI	agents	that	may	require	continuous	authentication	and
real-time	privilege	adjustments.	Its	heavy	reliance	on	user	attributes	also	does	not	align	well	with	AI-driven	interactions,	where	contextual	and	behavioral	factors
should	influence	access	decisions.3	A	critical	limitation	of	both	OAuth	and	SAML	in	this	context	is	their	trust-based	model,	which	often	assumes	that	once	an	entity	is
authenticated,	it	remains	trustworthy	throughout	the	session.	AI	agents,	however,	introduce	complexities	such	as	adversarial	attacks,	evolving	intent,	and	changing
operational	contexts,	necessitating	continuous	validation	rather	than	one-time	authentication.3	These	shortcomings	underscore	the	need	for	dynamic	identity
management	solutions	better	suited	to	AI-driven	environments.

This	challenge	of	continuous	trust	and	dynamic	privilege	adjustment	is	central	to	securing	AI	agent	interactions.	Unlike	human	users	who	operate	within	relatively
predictable	sessions,	autonomous	agents	can	operate	continuously,	learn,	and	adapt,	potentially	altering	their	behavior	or	intent.	This	inherent	dynamism	means	that	a
security	model	based	on	a	â€œtrust	once,	trust	alwaysâ€​	approach	within	a	session	is	insufficient.	Instead,	there	is	a	clear	requirement	for	continuous	validation	of	an
agentâ€™s	identity	and	its	authorized	scope,	allowing	for	real-time	adjustments	to	privileges	based	on	ongoing	context	and	observed	behavior.	This	moves	beyond
static	roles	and	scopes	to	a	more	dynamic,	contextual	authorization	model,	which	traditional	OAuth	and	SAML,	in	their	conventional	implementations,	struggle	to
accommodate.

2.3	Core	Authentication	and	Authorization	Requirements	for	Agents

Given	the	unique	characteristics	and	limitations	of	traditional	models,	robust	authentication	and	authorization	for	AI	agents	must	address	several	core	requirements:

Identity	Verification	for	Agents: 	Each	agent	must	possess	a	verifiable	digital	identity	that	can	be	authenticated	across	different	systems	and	domains.4	This
identity	should	be	unique	and	cryptographically	linked	to	the	agent	instance.4
Delegated	Authority:	Agents	often	act	on	behalf	of	human	users	or	other	agents.	The	system	must	support	authenticated	delegation,	allowing	human	users	to
securely	delegate	and	restrict	permissions	and	scope	to	agents	while	maintaining	a	clear	chain	of	accountability.4	This	includes	verifying	that	the	agent	is	acting
on	behalf	of	a	specific	human	user	and	within	the	granted	authorization.4
Granular	Permissions:	Access	control	for	agents	must	be	fine-grained,	allowing	specific	read	or	write	permissions	to	particular	resources	or	actions	rather
than	broad,	all-encompassing	access.7	This	aligns	with	the	principle	of	least	privilege,	minimizing	the	impact	of	a	compromised	agent.7
Auditability	and	Accountability:	All	critical	actions	performed	by	agents,	including	token	issuance	and	validation	events,	must	be	logged	and	auditable.4
This	enables	tracing	actions	back	to	the	agent,	the	delegating	user,	and	the	specific	credentials	used,	ensuring	accountability	in	autonomous	systems.4
Secure	Communication:	Agent-to-agent	and	agent-to-service	communications	must	be	secured	end-to-end,	protecting	data	in	transit	and	ensuring	the	integrity
and	confidentiality	of	messages.10	This	includes	leveraging	modern	TLS	versions	and	strong	cipher	suites.10

3.	Leveraging	Existing	OAuth	2.0	for	Machine-to-Machine	(M2M)	Agent	Communication

OAuth	2.0,	a	battle-tested	standard	for	authorization,	provides	a	strong	foundation	for	securing	AI	agent	communications,	particularly	through	its	Machine-to-
Machine	(M2M)	flows.

3.1	OAuth	2.0	Client	Credentials	Flow:	The	Foundation	for	Agent	Identity

The	OAuth	2.0	Client	Credentials	flow	is	specifically	designed	for	M2M	communication,	where	a	client	application	(such	as	an	AI	agent)	needs	to	authenticate	itself
and	obtain	an	access	token	to	interact	with	a	server	or	API	without	direct	user	interaction.12	This	flow	is	commonly	used	for	communication	between	microservices,
server-to-server	interactions,	and	daemons.12

The	process	involves	the	client	application	sending	a	request	to	the	OAuth	Authorization	Serverâ€™s	token	endpoint,	including	its	unique	 client_id	and
client_secret	(or	other	authentication	methods)	along	with	the	grant_type	set	to	client_credentials.12	Optionally,	a	scope	parameter	can	be
included	to	specify	the	level	of	access	or	specific	resources	the	client	needs.12	Upon	successful	validation	of	the	credentials,	the	Authorization	Server	issues	an	access
token,	typically	a	JSON	Web	Token	(JWT).12	This	JWT	contains	claims	such	as	the	issuer	(iss),	subject	(sub),	audience	(aud),	expiration	time	(exp),	and
optionally,	the	granted	scopes.6	The	client	then	validates	this	token	and	includes	it	in	the	HTTP	Authorization	header	as	a	bearer	token	for	subsequent	requests
to	protected	resources.12	The	resource	server,	in	turn,	validates	the	token	before	granting	access.12

Table	2:	OAuth	2.0	Client	Credentials	Flow	for	Agents

Step Actor Action Key	Parameters/Components

1.	Request
Token Client	Agent

Sends	POST	request	to
Authorization
Serverâ€™s	token
endpoint

grant_type=client_credentials
client_id,	client_secret
scope	(optional)Â¹Â²

2.	Validate	&
Issue Authorization	Server

Validates	client
credentials	and	issues
Access	Token	(JWT)

JWT	containing	iss,	sub,	aud,	exp,	scopesâ​¶

3.	Receive	&
Validate Client	Agent Receives	and	validates

Access	Token
JWT	signature	validation
exp,	nbf,	iss,	aud	claimsÂ¹Â²

4.	Access
Resource Client	Agent

Includes	token	in	API
requests	to	Resource
Server

Authorization:	Bearer	<access_token>Â¹Â²

5.	Resource
Validation Resource	Server Validates	token	and

grants	access	if	valid
JWT	validation	logic
Scope	checks,	ACLsÂ¹Â²

Alternative	Text	Flow	(for	better	compatibility):

OAuth	2.0	Client	Credentials	Flow:

Step	1:	ðŸ¤–	CLIENT	AGENT
								â†’	POST	to	/token	endpoint
								â†’	Parameters:	grant_type=client_credentials,	client_id,	client_secret,	scope

Step	2:	ðŸ›¡ï¸ ​	AUTHORIZATION	SERVER		
								â†’	Validates	credentials
								â†’	Issues	JWT	with:	iss,	sub,	aud,	exp,	scopes

Step	3:	ðŸ¤–	CLIENT	AGENT
								â†’	Receives	&	validates	JWT
								â†’	Checks:	signature,	exp,	nbf,	iss,	aud	claims

Step	4:	ðŸ¤–	CLIENT	AGENT
								â†’	API	Request	with:	Authorization:	Bearer	<access_token>

Step	5:	ðŸ“¦	RESOURCE	SERVER
								â†’	Validates	JWT	signature,	expiration,	issuer,	audience
								â†’	Checks	scopes	&	ACLs	â†’	Grants	access	if	valid

3.2	Best	Practices	for	Secure	M2M	OAuth	Implementation

Implementing	OAuth	for	AI	agents	requires	adherence	to	stringent	security	practices	to	mitigate	inherent	risks	in	automated,	autonomous	systems.

3.2.1	Secure	Client	Credential	Management

Protecting	client	IDs	and	secrets	is	paramount.	Credentials	should	never	be	hardcoded	into	source	code	or	committed	to	version	control.9	Instead,	secure	storage
services	such	as	secret	managers	(e.g.,	AWS	Secrets	Manager,	HashiCorp	Vault)	should	be	used	to	store	and	inject	credentials	securely	at	runtime.9	A	critical	practice
is	to	assign	unique	credentials	to	each	machine	or	service,	rather	than	sharing	one	API	key	across	multiple	services.9	This	reduces	the	â€œblast	radiusâ€​	of	a
compromise,	as	an	attacker	gaining	access	to	one	service	would	not	automatically	gain	access	to	everything	else.16

3.2.2	Short-Lived	Access	Tokens	and	Rotation	Strategies

Access	tokens	issued	to	AI	agents	should	be	short-lived,	ideally	expiring	within	5	to	15	minutes	for	most	M2M	use	cases.9	This	minimizes	the	impact	of	a
compromised	token	by	quickly	rendering	it	useless.7	While	refresh	tokens	are	commonly	used	in	user-based	OAuth	flows	to	obtain	new	access	tokens	without	re-
authentication	19,	it	is	important	to	note	that	refresh	tokens	are	rarely	issued	or	used	in	M2M	client	credentials	flows.18	This	is	because	M2M	clients	can	typically	re-
authenticate	themselves	repeatedly	without	requiring	user	interaction.18	Therefore,	for	most	agent-to-agent	or	agent-to-service	communication	using	Client
Credentials,	the	focus	should	be	on	robust	access	token	expiry	handling	and	regular,	automated	rotation	of	client	secrets,	rather	than	relying	on	refresh	tokens.18

Automated	rotation	of	client	secrets	on	a	regular	schedule	(e.g.,	every	90	days	or	less)	is	a	critical	security	practice.9	This	process	should	involve	generating	a	new
secret,	updating	it	in	the	secure	secrets	manager,	and	then	revoking	the	old	one	after	confirming	the	transition.9	Automation	through	CI/CD	pipelines,	cron	jobs,	or
serverless	functions	can	facilitate	these	rotations	without	disrupting	service	communications	and	reduce	the	chances	of	human	error.18

3.2.3	Asymmetric	Client	Authentication	(Private	Key	JWT)

For	a	higher	level	of	assurance,	OAuth	providers	increasingly	support	asymmetric	client	authentication,	such	as	using	Private	Key	JWTs	or	mTLS	(mutual	TLS),
instead	of	shared	secrets.13	In	this	approach,	the	client	authenticates	by	signing	a	JWT	with	its	private	key,	which	the	Authorization	Server	verifies	using	the
corresponding	public	key.18	This	method	offers	several	advantages:

No	Shared	Secrets:	Eliminates	the	risk	associated	with	transmitting	or	storing	shared	client_secret	values.18
Better	Auditability:	Cryptographic	signatures	provide	stronger	non-repudiation.18
Support	for	Rotation	via	Key	Pairs:	Private	keys	can	be	rotated	through	key	pairs,	adding	another	layer	of	cryptographic	assurance.18
Certificate-Based	Authentication:	Utilizing	X.509	certificates	for	client	authentication	provides	strong	identity	verification	and	supports	renewal,	offering
stronger	security	than	passwords	for	machines.16

3.3	JWT	Claims	for	Agent	Identity	and	Capabilities

JSON	Web	Tokens	(JWTs)	are	a	highly	suitable	format	for	access	tokens	in	agent-based	systems	due	to	their	self-contained	nature,	allowing	information	about	the
agent	and	its	permissions	to	be	carried	within	the	token	itself.12	This	enables	stateless	verification	by	resource	servers,	reducing	the	need	for	multiple	database
queries.21

3.3.1	Standard	Claims	for	Agent	Identification

JWTs	contain	a	set	of	claims,	which	are	statements	about	an	entity.	Several	standard	(registered)	claims	are	highly	relevant	for	agent	identification:

iss	(Issuer):	Identifies	the	entity	that	issued	the	JWT	(e.g.,	the	OAuth	Authorization	Server).6
sub	(Subject):	Identifies	the	principal	that	is	the	subject	of	the	JWT	(i.e.,	the	AI	agentâ€™s	unique	identifier).6
aud	(Audience):	Identifies	the	recipients	that	the	JWT	is	intended	for	(e.g.,	the	specific	API	or	service	the	agent	intends	to	access).6
exp	(Expiration	Time):	Specifies	the	time	on	and	after	which	the	JWT	must	not	be	accepted	for	processing.6
iat	(Issued	At	Time): 	Indicates	the	time	at	which	the	JWT	was	issued,	useful	for	determining	token	age.21
jti	(JWT	ID):	A	unique	identifier	for	the	JWT,	which	can	be	used	to	prevent	replay	attacks	by	ensuring	the	token	is	used	only	once.22

3.3.2	Custom	Claims	for	Granular	Agent	Context	and	Capabilities

Beyond	standard	claims,	custom	(non-registered)	claims	can	be	included	in	JWTs	to	provide	more	granular	context	about	the	agent	and	its	specific	capabilities.22
These	claims	enable	richer	authorization	decisions	and	better	auditability.	Examples	include:

agent_type:	(e.g.,	â€œPaymentAgentâ€​,	â€œDiagnosticAgentâ€​,	â€œLogisticsAgentâ€​).
capabilities:	A	list	or	structured	object	detailing	the	specific	functions	or	tools	the	agent	is	authorized	to	use	(e.g.,	â€œread_patient_recordsâ€​,
â€œgenerate_reportsâ€​,	â€œrequest_paymentâ€​).
delegated_user_id:	If	the	agent	is	acting	on	behalf	of	a	human	user,	this	claim	links	the	agentâ€™s	actions	to	the	specific	user	who	delegated	authority.4
organization_id	/	tenant_id:	Identifies	the	organizational	context	the	agent	belongs	to,	crucial	for	multi-tenant	environments.7
policy_version:	Indicates	the	version	of	the	authorization	policy	under	which	the	token	was	issued,	aiding	in	policy	updates	and	revocation.

It	is	important	to	be	mindful	of	payload	size	limitations	for	custom	claims,	as	some	servers	may	not	accept	headers	larger	than	8	KB.22

3.3.3	Exploring	Selective	Disclosure	(SD-JWT)	for	Agent	Cards

An	emerging	concept,	SD-JWT	(Selectively	Disclosable	JWT),	is	particularly	relevant	for	agent	identity	and	capability	advertisement	through	â€œAgent	Cardsâ€​.23
SD-JWT	allows	for	the	selective	revelation	of	specific	agent	capabilities,	contact	information,	and	operational	metadata	while	maintaining	cryptographic	integrity	and
preventing	correlation	across	different	interaction	contexts.23	This	specification	is	currently	under	development	in	the	IETF	as	draft-nandakumar-agent-sd-jwt.23	This
means	an	agent	can	present	only	the	necessary	information	to	a	requesting	entity,	enhancing	privacy	and	security	by	minimizing	data	exposure.	Key	binding	within
SD-JWT	provides	cryptographic	proof	that	the	presenter	of	an	SD-Card	possesses	the	private	key	corresponding	to	the	public	key	in	the	SD-Cardâ€™s

cnf	claim,	further	strengthening	identity	verification.23	This	is	an

emerging	concept	and	not	yet	a	widely	deployed	standard.

Table	3:	Recommended	JWT	Claims	for	AI	Agent	Identity	and	Capabilities

Claim	Type Claim	Name Description Example	Value Relevance	for	Agents

ðŸ“‹	Registered iss Issuer	of	the	JWT https://auth.example.com Identifies	the	trusted	authority	that
issued	the	agentâ€™s	tokenâ​¶

sub Unique	identifier	of	the
agent

agent-id-12345 Establishes	the	agentâ€™s	unique	digital
identityâ​¶

aud Intended	recipient	of	the
token

https://api.example.com/payments Ensures	token	is	used	only	by	intended
service/APIâ​¶

exp Expiration	time	of	the
token 1701388800	(Unix	timestamp) Enforces	short-lived	tokens,	reducing

compromise	windowâ​¶

iat Time	the	token	was
issued

1701385200 Useful	for	auditing	and	determining
token	ageÂ²Â¹

jti Unique	JWT	ID uuid-v4-token-id Prevents	replay	attacks	for	single-use
tokensÂ²Â²

ðŸŽ›ï¸​	Custom agent_type Categorization	of	the
agent PaymentProcessor,	DataAnalyst Enables	role-based	or	type-based

authorization	policies

capabilities
List	of	specific
functions/tools	agent	can
use

["process_payment",
"refund_transaction"]

Granular	authorization,	aligns	with
agentâ€™s	advertised	functions

delegated_user_id
Human	user	ID	on
whose	behalf	the	agent
acts

user_abc@example.com Critical	for	authenticated	delegation	and
human	accountabilityâ​´

organization_id Organizational	context
of	the	agent

org_xyz
Essential	for	multi-tenant	SaaS
environments	and	organizational
policiesâ​·

policy_version Version	of	authorization
policy	applied

v1.2 Supports	dynamic	policy	updates	and
revocation	tracking

ðŸ”¬	Emerging SD-JWT	Claims
Selective	disclosure	of
agent
metadata/capabilities

_sd,	_sd_alg,	cnf
Enhances	privacy	and	controlled
capability	advertisement	in	Agent
CardsÂ²Â³

Quick	Reference	for	JWT	Claims	(text	format):

ðŸ“‹	STANDARD	CLAIMS:
			â€¢	iss	(Issuer):	Who	issued	the	token	â†’	https://auth.example.com
			â€¢	sub	(Subject):	Agent's	unique	ID	â†’	agent-id-12345		
			â€¢	aud	(Audience):	Intended	recipient	â†’	https://api.example.com/payments
			â€¢	exp	(Expiration):	When	token	expires	â†’	1701388800
			â€¢	iat	(Issued	At):	When	token	was	created	â†’	1701385200
			â€¢	jti	(JWT	ID):	Unique	token	identifier	â†’	uuid-v4-token-id

ðŸŽ›ï¸ ​	CUSTOM	CLAIMS:
			â€¢	agent_type:	Agent	category	â†’	PaymentProcessor,	DataAnalyst
			â€¢	capabilities:	What	agent	can	do	â†’	["process_payment",	"refund_transaction"]
			â€¢	delegated_user_id:	Human	who	authorized	â†’	user_abc@example.com
			â€¢	organization_id:	Organizational	context	â†’	org_xyz
			â€¢	policy_version:	Policy	version	applied	â†’	v1.2

ðŸ”¬	EMERGING	CLAIMS:
			â€¢	SD-JWT:	Selective	disclosure	â†’	_sd,	_sd_alg,	cnf	(privacy-preserving)

3.4	Defining	Granular	Scopes	for	Agent	Permissions

The	principle	of	least	privilege	dictates	that	agents	should	only	be	granted	the	minimum	necessary	permissions	to	perform	their	designated	tasks.7	OAuth	scopes	are
an	effective	mechanism	to	achieve	this,	allowing	an	applicationâ€™s	access	to	be	limited	to	specific	areas	and	functionalities.7

When	defining	scopes	for	AI	agents,	it	is	highly	beneficial	to	align	them	with	existing	permission	models	within	the	organization.7	For	instance,	if	an	application
already	has	â€œreaderâ€​	and	â€œeditorâ€​	roles,	corresponding	OAuth	scopes	should	be	created	(e.g.,

data:read,	data:write).7	The	practice	of	creating	a	single,	all-encompassing	â€œallows-everythingâ€​	scope	should	be	avoided,	as	it	leads	to	over-provisioning	of	access
and	increased	risk.7	Scopes	should	follow	existing	role	inheritance	patterns,	avoiding	the	creation	of	a	separate	hierarchy	solely	for	OAuth	purposes.7

A	crucial	aspect	of	managing	agent	permissions	is	the	distinction	between	user-level	and	organizational-level	permissions.7	If	an	agent	requires	access	to	a	specific
userâ€™s	calendar,	that	permission	should	be	tied	to	that	userâ€™s	identity.	Conversely,	if	an	agent	needs	broader	access	to	organizational	resources,	such	as	a	shared
knowledge	base,	the	permission	should	be	tied	to	the	organizationâ€™s	context.7	This	allows	for	precise	control	and	ensures	that	sensitive	or	broad	access	is	granted
only	when	appropriate	and	auditable.	Furthermore,	it	is	advisable	to	restrict	the	ability	to	generate	OAuth	tokens	with	the	most	sensitive	or	permissive	scopes	to
administrative	users	only.7

The	interplay	of	scopes,	agent	capabilities,	and	delegated	authority	creates	a	complex	authorization	matrix	for	AI	agents.	Granular	scopes	are	not	merely	about

https://datatracker.ietf.org/doc/draft-nandakumar-agent-sd-jwt/

limiting	access;	for	agents,	they	must	dynamically	align	with	the	agentâ€™s	advertised	capabilities	(often	published	in	Agent	Cards	3)	and	the	specific	authority
delegated	by	a	human	user.4	This	means	that	the	scopes	in	an	agentâ€™s	access	token	should	reflect	not	only	what	the	agent

can	do	(its	inherent	capabilities),	but	also	what	it	is	allowed	to	do	(its	assigned	permissions),	and	critically,	what	it	 is	authorized	to	do	on	behalf	of	someone 	(the	scope
of	human	delegation).	This	multi-faceted	authorization	requirement	implies	a	need	for	sophisticated	policy	engines	capable	of	evaluating	these	combined	claims	in
real-time.

Finally,	every	action	taken	with	an	OAuth	token	by	an	agent	should	be	meticulously	logged	with	both	the	token	identifier	and	the	associated	user	or	organizational
context	in	audit	logs.7	This	ensures	a	clear	audit	trail	and	accountability	for	autonomous	actions.

4.	Integrating	with	the	Agent2Agent	(A2A)	Protocol	for	Interoperable	Security

The	Agent2Agent	(A2A)	Protocol	is	an	open	standard	designed	to	enable	secure,	scalable,	and	seamless	collaboration	between	autonomous	AI	agents	across	different
frameworks,	vendors,	and	domains.24	It	provides	a	standardized,	vendor-neutral	protocol	for	agents	to	discover	each	other,	share	capabilities,	delegate	tasks,	and
coordinate	complex	workflows.24

4.1	A2A	Protocol	Overview:	Enabling	Seamless	Agent	Collaboration

A2A	leverages	common	web	standards	such	as	HTTP,	JSON-RPC	requests,	and	Server-Sent	Events	(SSE)	to	ensure	reliable	communication	while	providing	essential
security,	auditing,	and	compliance	guardrails	for	enterprise	use.24	It	supports	rich	data	exchange	and	asynchronous	push	notifications,	enabling	AI	agents	to	manage
long-running	tasks	efficiently.24	The	protocol	establishes	a	common	language	and	framework,	allowing	agents	to	communicate	effectively	across	diverse	systems	and
enabling	them	to	negotiate	interaction	modalities.24	A2Aâ€™s	goal	is	to	scale	enterprise-level	agentic	systems,	allowing	coordination	of	hundreds	or	thousands	of
autonomous	agents	across	distributed	environments	without	bottlenecks.10	It	enables	dynamic	composition	and	optimization	of	workflows	by	allowing	agents	to
share	real-time	task	updates	and	intermediate	artifacts.10

4.2	A2Aâ€™s	Built-in	Security	Mechanisms	and	OAuth	Alignment

Security	and	authentication	are	critical	components	of	the	A2A	protocol,	ensuring	that	agents	can	communicate	securely	and	trust	each	otherâ€™s	identities.24	A2A
treats	each	agent	as	a	first-class,	HTTP-based	enterprise	application,	leveraging	existing	infrastructure	rather	than	inventing	new	protocols.10	At	its	core,	A2A
requires	that	every	interaction	happens	over	HTTPS	with	modern	TLS	versions	(1.2	or	higher)	and	strong	cipher	suites,	ensuring	data	in	transit	cannot	be	snooped	or
tampered	with.10

A2A	incorporates	enterprise-grade	authentication	and	authorization	mechanisms,	supporting	OpenAPI	authentication	schemes.26	Agents	advertise	their
authentication	requirements	in	their	Agent	Cards,	including	support	for	OAuth2,	mTLS,	API	keys,	or	OpenID	Connect.26	Clients	obtain	and	present	these	credentials
out	of	band,	never	embedding	secrets	inside	the	JSON-RPC	payload	itself.10

The	design	of	A2A	as	an	â€œidentity-awareâ€​	and	â€œsecure	by	defaultâ€​	protocol	26	is	a	significant	advantage	for	organizations	with	existing	OAuth	infrastructure.
Its	direct	support	for	OAuth2	and	other	standard	authentication	schemes	means	that	an	existing	OAuth	service	can	directly	fulfill	A2Aâ€™s	authentication
requirements.	This	architectural	choice	simplifies	integration,	allowing	organizations	to	extend	their	current	identity	management	capabilities	to	the	emerging	agent
ecosystem.	This	alignment	positions	A2A	as	a	de	facto	standard	for	secure	AI	agent	interoperability	on	the	web.10

Beyond	authentication,	A2A	provides	centralized	security	and	governance	capabilities,	enforcing	mTLS,	Role-Based	Access	Control	(RBAC),	quotas,	and	Data	Loss
Prevention	(DLP)	policies	at	the	gateway	level,	shielding	agents	from	direct	exposure.24	It	also	supports	schema	and	payload	validation,	redaction	of	sensitive	data,
and	normalization	of	API	versions	to	prevent	schema	drift	and	data	leakage.24	For	auditability,	A2A	offers	end-to-end	observability,	utilizing	OpenTelemetry-
powered	tracing	to	connect	every	agent	interaction	into	a	unified	span	for	audit	and	fast	incident	response.24

4.3	Agent	Cards:	Advertising	Capabilities	and	Authentication	Requirements

A	cornerstone	of	the	A2A	protocol	is	the	concept	of	â€œAgent	Cards.â€​	These	are	standardized,	machine-readable	JSON	documents	that	every	A2A-compliant	agent
exposes.26	Agent	Cards	detail	an	agentâ€™s	identity,	capabilities,	endpoints,	supported	message	types,	authentication	requirements,	and	operational	metadata.26	The
process	of	an	agent	publicly	declaring	its	functions	and	security	requirements	through	these	cards	is	referred	to	as	â€œcapability	advertisement.â€​

Agent	Cards	serve	a	dual	purpose:	they	function	as	a	service	discovery	mechanism	(describing	what	an	agent	 can	do)	and	as	an	advertisement	of	the	agentâ€™s
identity	and	security	posture	(how	to	authenticate	and	authorize 	it).26	By	explicitly	detailing	authentication	requirements,	Agent	Cards	become	a	critical	component
for	establishing	trust	and	enabling	secure	communication

before	interaction.	This	moves	beyond	simple	endpoint	discovery	to	a	security-first	discovery	mechanism,	where	agents	can	programmatically	understand	the	security
expectations	of	their	peers.26	This	dynamic	discovery,	coupled	with	explicit	authentication	requirements,	enables	dynamic	task	negotiation	and	collaboration	between
agents.24	The	emerging	SD-Card	format,	based	on	SD-JWT,	further	refines	this	by	allowing	granular,	privacy-preserving	selective	disclosure	of	agent	capabilities,
ensuring	that	only	necessary	information	is	shared	in	specific	contexts	while	maintaining	cryptographic	integrity.23

4.4	A2A	in	Multi-Agent	Systems:	Secure	Task	Delegation	and	Communication

In	multi-agent	systems,	A2A	facilitates	secure	task	delegation	and	communication	between	a	â€œclientâ€​	agent	(user-facing,	receiving	tasks	from	a	user)	and	one	or
more	â€œremoteâ€​	agents	(A2A	servers,	best	suited	to	perform	a	delegated	task).10	Through	a	shared	protocol	and	discovery	mechanisms,	agents	can:

Identify	and	understand	each	otherâ€™s	capabilities.24
Exchange	structured	messages	and	context	using	message	objects	and	data	fields.24
Collaborate	on	tasks	while	preserving	security	and	privacy	policies.24
Manage	long-running	tasks	with	event-driven	status	updates	and	push	notifications.24

A2A	maintains	state	across	multi-step	interactions,	allowing	each	stage	of	a	task	(sending	inputs,	receiving	partial	or	final	outputs)	to	be	correlated	correctly.10	This	is
crucial	for	complex	workflows	involving	multiple	back-and-forth	exchanges	between	agents.

4.5	Comparison	with	Related	Protocols:	A2A,	MCP,	and	ACP

It	is	important	to	understand	A2Aâ€™s	role	in	the	broader	landscape	of	agent	communication	protocols,	particularly	in	relation	to	Model	Context	Protocol	(MCP)	and
Agent	Communication	Protocol	(ACP).	These	protocols	address	different	layers	or	aspects	of	the	agentic	AI	stack	and	are	often	complementary	rather	than
competing.27

A2A	(Agent-to-Agent	Protocol):	Focuses	on	connecting	agents	to	other	agents,	enabling	peer-to-peer	collaboration,	task	delegation,	and	distributed	problem-
solving.27	It	standardizes	how	agents	from	different	vendors	or	runtimes	can	exchange	capabilities	and	coordinate	workflows	over	the	open	web.28	Its	security
model	is	built	on	web	standards,	including	OAuth	2.0	and	API	key-based	authorization,	with	capability-scoped	endpoints.28
MCP	(Model	Context	Protocol):	Focuses	on	connecting	agents	to	external	tools	and	data	sources	(e.g.,	APIs,	databases,	file	systems).27	It	enables	agents	to
access	structured	context	needed	to	perform	useful	actions.28	MCP	is	compatible	with	enterprise	authentication	standards	like	OAuth2	and	mTLS.28
ACP	(Agent	Communication	Protocol):	Developed	by	IBM,	ACP	focuses	on	local-first,	real-time	agent	orchestration	within	a	shared	runtime,	prioritizing
low-latency	coordination,	resilience,	and	composability.28	It	defines	REST-based	interfaces	for	agents	to	interact	and	share	resources	in	a	distributed	system.29
ACP	supports	â€œscale-to-zeroâ€​	environments	by	enabling	offline	discovery	via	embedded	metadata.30	While	ACP	enables	agent	orchestration	and
communication,	specific	details	on	its	security	features	and	integration	with	external	identity	providers	are	less	explicitly	defined	in	the	provided	information
compared	to	A2A	and	MCP,	though	it	is	designed	for	enterprise	integration	and	auditability.28

Table	4:	Comparison	of	Agent	Communication	Protocols	(A2A,	MCP,	ACP)	Security	Features

Feature/Protocol A2A	(Agent-to-Agent	Protocol) MCP	(Model	Context	Protocol) ACP	(Agent	Communication
Protocol)

Primary	Focus Agent-to-agent	communication,
collaboration,	task	delegation	27

Agent-to-tool/data	access,	providing
external	context	to	models	27

Local-first	agent	orchestration,	intra-
runtime	communication,	workflow
delegation	28

Communication	Model HTTP,	JSON-RPC	2.0,	Server-Sent
Events	(SSE)	24 JSON-RPC	for	tool	calls	30 REST-based	communication,	HTTP

conventions	30

Security	Mechanisms

OAuth	2.0,	API	keys,	mTLS,	OpenID
Connect;	HTTPS/TLS	1.2+;
capability-scoped	endpoints;
centralized	governance;	schema
validation	24

Compatible	with	API	gateways,
OAuth2,	mTLS,	enterprise
authentication	standards	28

Designed	for	local	sovereignty;	less
explicit	detail	on	specific	external
identity	integration	in	provided
material	28

Identity	Advertisement
Agent	Cards	(JSON	documents
detailing	capabilities,	auth
requirements)	26

Implicit	via	tool/API	definitions;
context-aware	responses	11

Offline	discovery	via	embedded
metadata	30

Scalability	Vision

Scales	enterprise-level	agentic
systems,	coordinates	thousands	of
agents	across	distributed
environments	10

Enhances	individual	agent
capabilities	by	providing	access	to
external	functionalities	11

Orchestrates	workflows,	delegates
tasks,	maintains	state	across	multiple
agents;	supports	scale-to-zero	29

Interoperability Framework-agnostic,	vendor-neutral
24

Universal	integration	with	APIs,
databases,	tools	11

Allows	agents	to	communicate	across
different	frameworks/stacks	30

Alternative	Protocol	Comparison	(simplified	view):

ðŸŒ ​	A2A	(Agent-to-Agent	Protocol)
			Focus:	Agent-to-agent	communication	&	collaboration
			Transport:	HTTP,	JSON-RPC	2.0,	Server-Sent	Events
			Security:	OAuth	2.0,	mTLS,	OpenID	Connect,	TLS	1.2+
			Discovery:	Agent	Cards	(JSON	capability	documents)
			Scale:	Enterprise-level,	thousands	of	distributed	agents

ðŸ”§	MCP	(Model	Context	Protocol)		
			Focus:	Agent-to-tool/data	access	&	external	context
			Transport:	JSON-RPC	for	tool	calls
			Security:	API	gateways,	OAuth2,	mTLS	compatible
			Discovery:	Implicit	via	tool/API	definitions
			Scale:	Enhances	individual	agent	capabilities

ðŸ ​		ACP	(Agent	Communication	Protocol)
			Focus:	Local-first	orchestration	&	intra-runtime	communication
			Transport:	REST-based,	HTTP	conventions		
			Security:	Local	sovereignty	design	(limited	external	identity	detail)
			Discovery:	Offline	via	embedded	metadata
			Scale:	Workflow	orchestration,	scale-to-zero	support

5.	Advanced	Authentication	and	Authorization	Patterns	for	Agentic	Workflows

As	agentic	systems	mature	and	scale,	more	sophisticated	authentication	and	authorization	patterns	become	necessary	to	manage	their	lifecycle	and	interactions
securely.

5.1	Dynamic	Client	Registration	(DCR):	Automating	Agent	Onboarding	at	Scale

Dynamic	Client	Registration	(DCR)	is	an	extension	of	the	OAuth	2.0	specification	that	allows	client	applications,	including	AI	agents	and	microservices,	to	register
themselves	programmatically	with	an	authorization	server	at	runtime,	without	manual	human	intervention.20	This	eliminates	the	need	for	pre-provisioning	clients	and
is	particularly	beneficial	for	managing	ephemeral	clients,	such	as	AI	agents	that	spin	up	temporarily.20	DCR	fits	seamlessly	into	modern	automation	pipelines	like
GitOps	and	CI/CD,	enabling	efficient,	automated	workflows	and	reducing	credential	reuse	by	isolating	each	client	with	unique	credentials	and	permissions.20

The	DCR	process	involves	the	client	sending	a	JSON	payload	containing	its	metadata	(e.g.,	client_name,	redirect_uris,	grant_types,	token_endpoint_auth_method)	to
the	authorization	serverâ€™s	client	registration	endpoint.20	The	server	then	responds	with	a	unique

client_id,	potentially	a	client_secret,	and	other	metadata,	including	a	registration_access_token	for	self-service	management.33

For	secure	DCR,	especially	for	autonomous	agents,	strong	authentication	methods	are	critical.	Mutual	TLS	(mTLS)	can	validate	the	client	at	the	network	layer,
ensuring	only	trusted	workloads	can	register.20	Additionally,	clients	can	prove	their	identity	using	signed	JWTs	as	â€œsoftware	statementsâ€​	during	registration.20
While	DCR	can	support	â€œopen	registrationâ€​	for	any	client,	in	enterprise	environments,	it	is	a	necessity	to	enforce	initial	access	tokens	to	protect	the	registration
endpoint.33	These	initial	access	tokens	are	typically	obtained	via	the	Client	Credentials	flow	or	a	user	interactive	flow,	and	they	signal	that	the	registration	request

comes	from	an	authorized	entity.33

Table	5:	OAuth	2.0	Dynamic	Client	Registration	(DCR)	Security	Best	Practices	for	Agents

Practice Description Rationale	for	Agents

Enforce	Initial	Access	Tokens
Require	clients	to	present	an	initial	access	token
(e.g.,	obtained	via	Client	Credentials	flow)	to
register.33

Prevents	unauthorized	or	malicious	agents	from
freely	registering,	maintaining	a	secure	perimeter
for	automated	onboarding.

Require	Strong	Client	Authentication Utilize	mTLS	or	Private	Key	JWTs	for	client
authentication	during	registration.18

Replaces	vulnerable	shared	secrets	with
cryptographically	stronger	methods,	enhancing
trust	and	auditability	for	agent	identities.

Validate	Client	Metadata
Rigorously	validate	the	JSON	payload	submitted
by	the	client	during	registration	(e.g.,	client_name,
redirect_uris,	grant_types).31

Prevents	misconfigurations	or	malicious	inputs	that
could	lead	to	security	vulnerabilities	or	operational
issues	for	agents.

Implement	Rate	Limiting	on	Registration
Endpoint

Apply	rate	limits	to	the	DCR	endpoint	to	prevent
abuse	and	Denial	of	Service	(DoS)	attacks.9

Protects	the	authorization	server	from	being
overwhelmed	by	rapid,	potentially	malicious,	agent
registration	attempts.

Monitor	Registration	Events
Log	all	DCR	requests,	including	client	metadata,
initial	access	token	usage,	and	registration
outcomes.9

Provides	an	audit	trail	for	agent	onboarding,
enabling	detection	of	suspicious	activity	or
unauthorized	registrations.

5.2	OAuth	2.0	Token	Exchange	(RFC	8693):	Enabling	Delegation	and	Least	Privilege

OAuth	2.0	Token	Exchange	(RFC	8693)	is	an	advanced	grant	type	that	allows	a	system	to	exchange	an	existing	security	token	(the	â€œsubject	tokenâ€​)	for	a	new	one
with	different	attributes,	such	as	altered	scopes	or	audience.13	This	mechanism	is	particularly	valuable	in	multi-agent	systems	for	enforcing	the	principle	of	least
privilege	and	managing	complex	delegation	scenarios.13

The	token	exchange	flow	enhances	security	by	ensuring	tokens	are	scoped	appropriately,	reducing	risks	from	over-permissioned	tokens.13	It	is	useful	when	an
existing	token	is	invalid	or	insufficient	for	accessing	a	specific	resource	or	service.13	Key	use	cases	for	agents	include:

Delegation	of	Authority:	An	agent	acting	on	behalf	of	a	human	user	or	another	agent	can	exchange	a	token	representing	the	delegatorâ€™s	identity	for	a	new
token	that	includes	the	agentâ€™s	identity	as	an	â€œactorâ€​	while	still	representing	the	original	subject.13	This	provides	context	about	who	is	making	the
request	while	maintaining	the	original	delegation	chain.
Principle	of	Least	Privilege:	In	complex	multi-agent	workflows,	an	agent	might	initially	receive	a	broader	token.	For	a	specific	sub-task	requiring	access	to	a
sensitive	resource,	it	can	exchange	this	token	for	a	new	one	with	a	precisely	restricted	scope,	ensuring	minimal	access	rights	are	granted	at	every	step.13
Cross-Domain	Security:	Token	exchange	facilitates	secure	access	to	resources	across	different	security	domains.	An	agent	with	a	token	valid	in	one	domain
can	exchange	it	for	a	token	valid	in	another	trusted	domain,	streamlining	cross-system	interactions	without	requiring	re-authentication.13
Impersonation:	An	agent	might	need	to	act	as	a	specific	user	or	another	agent	for	a	particular	task.	Token	exchange	allows	the	creation	of	a	new	token	that
reflects	this	impersonated	identity,	with	the	original	agent	identified	as	the	â€œactorâ€​.13
Workflow	Chaining:	In	multi-step	agentic	workflows,	where	tasks	are	handed	off	sequentially,	token	exchange	enables	each	subsequent	agent	or	service	to
receive	a	refined	token	tailored	to	its	specific	role	and	required	permissions	for	that	stage	of	the	workflow.

The	token	exchange	protocol	categorizes	tokens	into	three	types:	the	subject_token	(the	existing	token	being	exchanged),	the	actor_token	(an	optional	token
representing	the	entity	requesting	the	exchange	on	behalf	of	the	subject),	and	the	requested_token	(the	newly	issued	token).13	Best	practices	for	implementation
emphasize	robust	policies	on	the	authorization	server	to	prevent	privilege	escalations	and	the	use	of	the

scopes	parameter	to	restrict	the	context	in	which	the	resulting	access	token	is	valid.13

Table	6:	OAuth	2.0	Token	Exchange	(RFC	8693)	Use	Cases	for	Multi-Agent	Systems

Use	Case Description Agentic	Scenario	Example

Delegation	of	Authority
An	agent	acts	on	behalf	of	a	human	user	or	another
agent,	with	the	new	token	reflecting	both	the
original	subject	and	the	acting	agent.

A	â€œUser	Assistant	Agentâ€​	exchanges	its
userâ€™s	token	for	a	new	token	that	identifies
itself	as	the	actor,	allowing	it	to	call	a	â€œPayment
Agentâ€​	on	the	userâ€™s	behalf.

Principle	of	Least	Privilege
An	agent	requests	a	new	token	with	a	more
granular	scope	for	a	specific	sub-task,	limiting	its
access	to	only	what	is	required.

A	â€œData	Analysis	Agentâ€​	with	broad	read
access	exchanges	its	token	for	one	with	a	specific
financial_data:read_only	scope	before	accessing
sensitive	financial	APIs.

Cross-Domain	Access An	agent	needs	to	interact	with	services	residing	in
different	security	domains	or	identity	providers.

A	â€œLogistics	Agentâ€​	from	Company	A
exchanges	its	token	for	one	valid	in	Company
Bâ€™s	domain	to	access	Company	Bâ€™s
shipping	APIs.

Impersonation An	agent	needs	to	perform	actions	as	if	it	were	a
specific	user	or	another	agent	within	the	system.

A	â€œCustomer	Service	Agentâ€​	exchanges	its
token	to	temporarily	impersonate	a	customerâ€™s
identity	to	troubleshoot	a	specific	account	issue.

Workflow	Chaining
Sequential	tasks	where	each	step	requires	a	refined
or	specialized	token	for	the	next	stage	of	the
workflow.

An	â€œOrder	Processing	Agentâ€​	receives	an
initial	order	token;	it	exchanges	this	for	a
â€œPayment	Authorization	Tokenâ€​	to	interact
with	a	payment	gateway,	then	for	a	â€œShipping
Request	Tokenâ€​	for	a	logistics	service.

5.3	Application-Layer	Security:	Message	Signing	and	Encryption	for	Enhanced	Trust

While	Transport	Layer	Security	(TLS/HTTPS)	provides	essential	encryption	for	data	in	transit	10,	for	highly	sensitive	agent	interactions,	there	is	a	growing	necessity
for	additional	application-layer	security	mechanisms.	This	approach	ensures	end-to-end	protection	of	messages,	regardless	of	intermediary	hops	or	potential
decryption	at	network	layers.

Googleâ€™s	Application-Layer	Transport	Security	(ALTS)	is	an	example	of	a	mutual	authentication	and	transport	encryption	system	that	operates	at	the	application
layer	to	protect	RPC	communications.36	ALTS	provides	applications	with	an	authenticated	remote	peer	identity,	which	can	then	be	used	to	implement	fine-grained
authorization	policies.36	This	allows	application	developers	to	focus	on	functional	logic	while	security	is	handled	transparently	at	a	deeper	level.

Message	Level	Encryption	(MLE)	using	JSON	Web	Encryption	(JWE)	and	JSON	Web	Signature	(JWS)	is	another	robust	application-layer	security	technique.37

JWS	(Message	Signing):	Provides	cryptographic	integrity	and	non-repudiation.	An	agent	can	sign	its	messages	using	its	private	key,	allowing	the	receiving
agent	to	verify	the	messageâ€™s	authenticity	and	ensure	it	hasnâ€™t	been	tampered	with	in	transit.21	This	is	crucial	for	establishing	trust	in	multi-agent
interactions	where	accountability	is	paramount.
JWE	(Message	Encryption):	Provides	end-to-end	confidentiality	for	the	message	payload.	Even	if	the	transport	layer	(TLS)	is	terminated	at	an	intermediary
proxy,	the	message	content	remains	encrypted	until	it	reaches	the	intended	recipient,	which	possesses	the	corresponding	private	key	for	decryption.37	This	is
particularly	important	for	sensitive	data	exchanged	between	agents.

The	Agent	Network	Protocol	(ANP)	also	highlights	the	importance	of	an	â€œIdentity	and	Encrypted	Communication	Layerâ€​	based	on	W3C	DID	standards,
providing	decentralized	identity	authentication	and	end-to-end	encrypted	communication	between	agents.38

The	increasing	emphasis	on	application-layer	security,	beyond	just	TLS,	indicates	a	significant	shift	towards	end-to-end	trust	for	agent	communication.	This	suggests
that	for	highly	sensitive	agent	interactions,	merely	encrypting	the	transport	layer	is	insufficient.	Message	signing	(JWS)	ensures	integrity	and	non-repudiation,	while
message	encryption	(JWE)	provides	confidentiality	end-to-end ,	even	across	intermediaries.	This	is	a	direct	response	to	the	â€œnever	trust,	always	verifyâ€​	principle	6
and	the	potential	for	complex,	multi-hop	agent	interactions	where	data	might	be	exposed	at	intermediate	processing	points.

5.4	Architectural	Patterns	for	Agent	Authorization:	Centralized	vs.Â	Distributed

When	designing	authorization	for	agent-based	architectures,	a	key	decision	involves	choosing	between	centralized	and	distributed	authorization	patterns.

Centralized	Authorization	Service: 	This	pattern	involves	a	dedicated	authorization	service	that	manages	all	authorization	data	and	logic.13	When	other
services	or	agents	need	to	perform	permission	checks,	they	query	this	central	service.39	This	approach	offers	strong	consistency	in	policy	enforcement,
simplifies	policy	management	(as	policies	are	stored	as	code	in	a	single	place,	e.g.,	Cerbos	39),	and	allows	for	easier	auditing.	However,	it	introduces	a	single
point	of	failure	and	can	add	latency	due	to	network	calls	for	every	authorization	decision.40
API	Gateway	Pattern:	In	this	pattern,	an	API	gateway	sits	between	the	client	(agent)	and	the	backend	services.40	The	gateway	is	responsible	for	both
authentication	and	initial	authorization,	often	fetching	user/agent	role	information	and	attaching	it	to	the	request	before	forwarding	it	downstream.40	This
simplifies	downstream	services,	as	they	do	not	need	to	concern	themselves	with	where	role	data	originates.40	While	offering	architectural	simplicity,	the
gateway	can	become	a	bottleneck	and	may	not	be	suitable	for	very	fine-grained	authorization	decisions	that	require	deep	context	from	backend	services.
Distributed	Authorization:	In	this	model,	each	microservice	or	agent	stores	and	enforces	its	own	authorization	information.39	This	can	offer	high	availability
and	low	latency	if	data	is	local.	However,	it	complicates	policy	consistency	across	the	system,	requires	each	service	to	manage	its	own	authorization	logic,	and
can	lead	to	duplicated	effort	and	potential	inconsistencies	if	not	managed	carefully.39

The	discussion	of	centralized	versus	distributed	authorization	highlights	a	critical	architectural	decision	point	for	scalable	agent	systems.	While	centralized	models
(like	an	authorization	service	or	API	gateway)	simplify	policy	management	and	consistency,	they	introduce	single	points	of	failure	and	potential	latency.	Distributed
models	offer	resilience	but	complicate	policy	enforcement	and	consistency	across	a	potentially	vast	number	of	autonomous	agents.	For	dynamic,	high-volume	agent
interactions,	the	choice	will	heavily	influence	performance,	scalability,	and	security	posture,	requiring	careful	consideration	of	the	trade-offs	between	consistency,
latency,	and	operational	complexity.

Authorization	Architecture	Patterns	Comparison

The	following	diagram	illustrates	the	three	main	architectural	approaches	for	agent	authorization:

flowchart	TB
				subgraph	CP	["ðŸ ​¢	Centralized	Authorization	Pattern"]
								CA1["ðŸ¤–	Agent	A"]	-->	AG1["ðŸŒ ​	API	Gateway
Initial	Auth"]
								CA2["ðŸ¤–	Agent	B"]	-->	AG1
								CA3["ðŸ¤–	Agent	C"]	-->	AG1
								
								AG1	-->	AS1["ðŸ” ​	Central	Auth	Service
Policy	Engine"]
								AS1	-->	M1["ðŸ“¦	Microservice	1"]
								AS1	-->	M2["ðŸ“¦	Microservice	2"]
								AS1	-->	M3["ðŸ“¦	Microservice	3"]
				end
				
				subgraph	DP	["ðŸŒ ​	Distributed	Authorization	Pattern"]
								DA1["ðŸ¤–	Agent	A"]	-->	DM1["ðŸ“¦	Service	1
Local	Auth"]
								DA2["ðŸ¤–	Agent	B"]	-->	DM2["ðŸ“¦	Service	2
Local	Auth"]
								DA3["ðŸ¤–	Agent	C"]	-->	DM3["ðŸ“¦	Service	3
Local	Auth"]
								
								DM1	-.->	DM2
								DM2	-.->	DM3
								DM3	-.->	DM1
				end
				
				subgraph	HP	["âš–ï¸ ​	Hybrid	Pattern	(Recommended)"]
								HA1["ðŸ¤–	Agent	A"]	-->	HG["ðŸŒ ​	API	Gateway
Auth	+	Routing"]
								HA2["ðŸ¤–	Agent	B"]	-->	HG
								
								HG	-->	HAS["ðŸ” ​	Policy	Engine
Complex	Decisions"]
								HG	-->	HS1["ðŸ“¦	Service	1
Simple	Local	Auth"]
								HG	-->	HS2["ðŸ“¦	Service	2
Simple	Local	Auth"]
				end
				
				style	AS1	fill:#ffebee
				style	HAS	fill:#e8f5e8
				style	HG	fill:#f3e5f5

Pattern	Comparison:

Pattern âœ…	Advantages â​Œ	Disadvantages

Centralized Strong	ConsistencyCentralized	Policy
Single	Point	of	Failure
Latency

Distributed High	AvailabilityLow	Latency
Policy	Consistency
Complex	Management

Hybrid

Best	of	Both
Scalable
Consistent	Policies
Performance

-

6.	Open	Challenges	and	Future	Considerations	for	Agent	Identity	Management

The	evolving	landscape	of	AI	agents	presents	several	challenges	and	areas	for	future	development	in	identity	management.

6.1	Managing	Human-to-Agent	Delegation	of	Authority

A	significant	challenge	lies	in	securely	managing	the	delegation	of	authority	from	human	users	to	AI	agents.	This	process	often	begins	with	a	human	user	delegating	a
task	to	an	AI	agent	via	natural	language.5	The	agent	must	then	translate	these	natural	language	instructions	into	a	structured,	machine-readable	policy	(e.g.,	using
XACML	or	ODRL)	that	defines	the	scope	and	permissions	for	its	actions.5	This	translation	from	human	intent	to	machine-executable	policy	can	introduce	a
â€œsemantic	gapâ€​	(the	disconnect	between	human	natural	language	instructions	and	machine-executable	policies),	where	the	agentâ€™s	interpretation	may	not
perfectly	align	with	the	userâ€™s	original	meaning.	A	critical	â€œhuman-in-the-loopâ€​	approval	step	is	often	required,	where	users	review	and	explicitly	approve	the
AI-generated	policies	before	authorization	is	granted.5	This	ensures	alignment	with	the	userâ€™s	intent	and	prevents	unauthorized	scope	escalation.
Cryptographically	signed	â€œdelegation	tokensâ€​	are	then	issued,	encoding	the	agentâ€™s	permissions,	user	identity,	and	validity	period,	preventing	tampering	and
unauthorized	actions.5

Delegation	Flow	Visualization

The	following	diagram	illustrates	the	complete	delegation	workflow	from	human	authority	to	agent	execution:

flowchart	TD
				U["ðŸ§‘	Human	User
Original	Authority"]	-->	D1{"ðŸ“ ​	Delegation	Decision
What	can	agent	do?"}
				
				D1	-->	P1["ðŸ” ​	Policy	Generation
Natural	Language	â†’	XACML/ODRL"]
				P1	-->	A1{"âœ…	Human	Approval
Review	&	Authorize?"}
				
				A1	-->|"â ​Œ	Reject"|	R1["ðŸš«	Deny	Access
End	Process"]
				A1	-->|"âœ…	Approve"|	S1["ðŸ“œ	Sign	Delegation	Token
Cryptographically	Bound"]
				
				S1	-->	CA["ðŸ¤–	Client	Agent
Receives	Delegated	Authority"]
				
				CA	-->	T1["ðŸŽ«	Token	Exchange
RFC	8693"]
				T1	-->	ST["ðŸ”‘	Scoped	Token
Principle	of	Least	Privilege"]
				
				CA	-->	A2A{"ðŸŒ ​	A2A	Protocol
Agent-to-Agent?"}
				
				A2A	-->|"Yes"|	AC["ðŸ“‹	Agent	Card	Discovery
Capabilities	&	Auth	Requirements"]
				AC	-->	RA["ðŸ¤–	Remote	Agent
Task	Execution"]
				
				A2A	-->|"No"|	API["ðŸ”Œ	Direct	API	Access
Resource	Server"]
				
				RA	-->	AL["ðŸ“Š	Audit	Log
Action	Traceability"]
				API	-->	AL
				
				AL	-->	CHN["ðŸ”—	Chain	of	Accountability
User	â†’	Agent	â†’	Action"]
				
				style	U	fill:#e1f5fe
				style	CA	fill:#f3e5f5
				style	RA	fill:#f3e5f5
				style	AL	fill:#fff3e0
				style	CHN	fill:#e8f5e8

Alternative	Flow	Diagram	(if	Mermaid	doesnâ€™t	render):

Human-to-Agent	Delegation	Flow:

ðŸ§‘	Human	User	(Original	Authority)
				â†“
ðŸ“ ​	DELEGATION	DECISION:	What	can	agent	do?
				â†“
ðŸ” ​	POLICY	GENERATION:	Natural	Language	â†’	XACML/ODRL
				â†“
âœ…	HUMAN	APPROVAL:	Review	&	Authorize?
				â”œâ”€â ​Œ	REJECT	â†’	ðŸš«	Deny	Access	(End	Process)
				â””â”€âœ…	APPROVE	â†’	ðŸ“œ	Sign	Delegation	Token	(Cryptographically	Bound)
									â†“

				ðŸ¤–	CLIENT	AGENT	(Receives	Delegated	Authority)
									â”œâ”€ðŸŽ«	Token	Exchange	(RFC	8693)	â†’	ðŸ”‘	Scoped	Token	(Least	Privilege)
									â””â”€ðŸŒ ​	A2A	Protocol	Decision:	Agent-to-Agent?
														â”œâ”€YES	â†’	ðŸ“‹	Agent	Card	Discovery	â†’	ðŸ¤–	Remote	Agent	(Task	Execution)
														â””â”€NO	â†’	ðŸ”Œ	Direct	API	Access	(Resource	Server)
																			â†“
														ðŸ“Š	AUDIT	LOG:	Action	Traceability
																			â†“
														ðŸ”—	CHAIN	OF	ACCOUNTABILITY:	User	â†’	Agent	â†’	Action

Key	Components:	-	ðŸ§‘	Human	Authority:	Original	source	of	all	permissions	-	ðŸ“​	Policy	Translation:	AI	converts	natural	language	to	machine	policies
-	âœ…	Human-in-Loop:	Critical	approval	step	prevents	scope	escalation	-	ðŸ”​	Cryptographic	Binding:	Tamper-proof	delegation	tokens	-	ðŸŽ«	Dynamic
Scoping:	Token	exchange	for	least	privilege	-	ðŸ“Š	Full	Auditability:	Complete	traceability	chain

6.2	Continuous	Authentication	and	Authorization	for	Dynamic	Agent	Behavior

As	discussed	previously,	the	dynamic	nature	of	AI	agents,	their	learning	capabilities,	and	potential	for	evolving	intent	necessitate	a	shift	from	one-time	authentication
to	continuous	validation	and	adaptive	access	control.3	Agents	require	more	granular	and	adaptive	access	control	mechanisms,	as	their	permissions	may	need	to
change	dynamically	based	on	contextual	factors.3	This	implies	the	need	for	real-time	authorization	systems	that	can	evaluate	context,	behavior,	and	risk	levels
continuously.	Monitoring	and	auditing	token	requests	and	usage	for	unexpected	activity	patterns	are	essential	to	detect	issues	such	as	compromised	credentials	or
unauthorized	actions.9	Machine	learning-based	security	anomaly	detection	(e.g.,	via	Azure	Sentinel	or	Defender)	can	further	strengthen	security	by	flagging	unusual
AI-Agent	behavior	across	systems.6

6.3	Securing	On-Device	and	Edge	Agents

A	particularly	complex	authorization	problem	arises	when	AI	agents	operate	directly	on	a	userâ€™s	device	or	at	the	edge,	performing	operations	as	if	they	were	the
user	(e.g.,	desktop	agents).7	In	these	scenarios,	traditional	network-centric	OAuth	flows	become	less	directly	applicable.	The	challenge	is	that	the	agent	is	not	a
separate	user	account,	nor	is	it	simply	a	Linux	process	user	owner;	data	sharing	is	often	intended,	yet	fine-grained	control	is	needed	to	differentiate	â€œwhoâ€​
(human	or	agent)	is	taking	an	action.7	This	suggests	a	need	for	new,	more	granular	permissions	at	the	operating	system	or	application	level	to	manage	agent	access	to
local	resources	and	user	data.7	Protocols	like	ACP,	with	their	local-first	focus	and	minimal	network	overhead,	are	designed	for	such	tightly	controlled	or	offline
environments.28

The	challenge	of	on-device	agents	represents	a	fundamental	shift	from	network-based	authorization	to	a	more	localized	security	paradigm.	When	an	agent	acts	 as	if	it
were	the	user	on	a	local	device,	traditional	network-centric	OAuth	flows,	designed	for	remote	resource	access,	become	less	relevant.	This	implies	a	need	for	novel
authorization	primitives	at	the	operating	system	or	application	layer	that	can	differentiate	between	human	and	agent	actions	locally.	This	is	a	frontier	challenge	for
agent	identity,	potentially	leading	to	a	convergence	of	device	security,	application	security,	and	identity	management	to	address	the	unique	trust	boundaries	of	on-
device	autonomous	entities.

6.4	Ensuring	Auditability	and	Accountability	in	Autonomous	Systems

Maintaining	clear	audit	trails	and	accountability	is	paramount	in	autonomous	multi-agent	systems.	All	critical	function	calls	and	agent	interactions	should	pass
through	identity	server	checks,	inherently	generating	an	audit	trail.6	End-to-end	observability,	perhaps	powered	by	tools	like	OpenTelemetry,	can	connect	every	agent
interaction	into	a	unified	span	for	auditability	and	fast	incident	response.24	This	allows	for	tracing	actions	to	the	specific	agent,	the	human	user	on	whose	behalf	it
acted,	and	the	validated	credentials	used	at	a	specific	time,	thereby	achieving	accountability	in	an	autonomous	system.4	Comprehensive	logging	of	all	authentication
attempts	and	authorization	decisions,	coupled	with	real-time	monitoring,	is	crucial	for	detecting	suspicious	activity	before	incidents	escalate.9	Data	minimization
practices,	redaction	before	logging,	and	encryption	of	data	both	in	transit	and	at	rest	with	aggressive	retention	and	purge	policies	are	also	vital	for	compliance	and
security.10

7.	Recommendations	and	Implementation	Roadmap

Integrating	OAuth	with	AI	agents	and	the	A2A	protocol	requires	a	strategic,	phased	approach,	focusing	on	secure	foundations	and	scalable	patterns.	The	following
visual	diagrams	illustrate	the	key	workflows	and	architectural	patterns	discussed	throughout	this	document.

7.1	OAuth	+	A2A	Integration	Lifecycle	Flow

The	following	diagram	illustrates	the	complete	lifecycle	of	OAuth	integration	with	A2A	protocol,	showing	how	human	delegation,	token	management,	and	agent-to-
agent	communication	work	together:

sequenceDiagram
				participant	U	as	Human	User
				participant	CA	as	Client	Agent
				participant	AS	as	OAuth	Auth	Server
				participant	AA	as	A2A	Agent
				participant	RS	as	Resource	Server
				
				Note	over	U,RS:	OAuth	+	A2A	Integration	Lifecycle
				
				U->>CA:	1.	Delegate	task	with	permissions
				CA->>AS:	2.	Request	token	(Client	Credentials)
				Note	right	of	AS:	grant_type=client_credentials
client_id,	client_secret
scope=delegated_permissions
				AS->>CA:	3.	Return	access	token	(JWT)
				Note	right	of	AS:	Contains:	iss,	sub,	aud,	exp
delegated_user_id,	capabilities
				
				CA->>AA:	4.	Discover	agent	via	A2A
				Note	right	of	AA:	GET	/agent-card
Returns	capabilities	&	auth	requirements
				AA->>CA:	5.	Return	Agent	Card	(JSON)
				

				CA->>AA:	6.	Authenticate	&	delegate	task
				Note	right	of	AA:	Authorization:	Bearer	token
JSON-RPC	2.0	over	HTTPS
				AA->>AS:	7.	Validate	token
				AS->>AA:	8.	Token	validation	response
				
				AA->>RS:	9.	Access	protected	resource
				Note	right	of	RS:	Uses	delegated	permissions
from	original	user	context
				RS->>AA:	10.	Return	requested	data
				AA->>CA:	11.	Task	completion	response
				CA->>U:	12.	Final	result	with	audit	trail
				
				Note	over	U,RS:	All	interactions	logged	for	accountability

Alternative	Text	Flow	(if	diagram	doesnâ€™t	render):

Step-by-Step	OAuth	+	A2A	Integration	Flow:

ðŸ‘¤	Human	User
				â†“	1.	Delegate	task	with	permissions
ðŸ¤–	Client	Agent	
				â†“	2.	Request	token	(Client	Credentials:	grant_type,	client_id,	client_secret,	scope)
ðŸ›¡ï¸ ​	OAuth	Auth	Server
				â†“	3.	Return	access	token	(JWT	with	iss,	sub,	aud,	exp,	delegated_user_id,	capabilities)
ðŸ¤–	Client	Agent
				â†“	4.	Discover	agent	via	A2A	(GET	/agent-card)
ðŸ¤–	A2A	Agent
				â†“	5.	Return	Agent	Card	(JSON	with	capabilities	&	auth	requirements)
ðŸ¤–	Client	Agent
				â†“	6.	Authenticate	&	delegate	task	(Authorization:	Bearer	token,	JSON-RPC	2.0/HTTPS)
ðŸ¤–	A2A	Agent
				â†“	7.	Validate	token
ðŸ›¡ï¸ ​	OAuth	Auth	Server
				â†“	8.	Token	validation	response
ðŸ¤–	A2A	Agent
				â†“	9.	Access	protected	resource	(using	delegated	permissions)
ðŸ“¦	Resource	Server
				â†“	10.	Return	requested	data
ðŸ¤–	A2A	Agent
				â†“	11.	Task	completion	response
ðŸ¤–	Client	Agent
				â†“	12.	Final	result	with	audit	trail
ðŸ‘¤	Human	User

ðŸ” ​	Note:	All	interactions	are	logged	for	complete	accountability

7.2	Phased	Approach	for	OAuth	and	A2A	Integration

1.	 Phase	1:	Establish	Foundational	M2M	OAuth:	Begin	by	implementing	the	OAuth	2.0	Client	Credentials	flow	for	agent-to-service	communication.	Focus	on
securing	client	credentials,	using	short-lived	access	tokens,	and	implementing	robust	token	validation	at	resource	servers.

2.	 Phase	2:	Introduce	Dynamic	Client	Registration	(DCR):	As	the	number	of	agents	grows,	implement	DCR	to	automate	agent	onboarding	and	credential
management.	Enforce	initial	access	tokens	and	strong	client	authentication	methods	(e.g.,	mTLS,	Private	Key	JWTs)	for	the	registration	endpoint.

3.	 Phase	3:	Implement	A2A	for	Interoperability:	Integrate	A2A	into	multi-agent	systems	to	enable	seamless,	secure	agent-to-agent	communication.	Leverage
A2Aâ€™s	built-in	security	features,	including	its	support	for	OAuth2,	and	ensure	Agent	Cards	accurately	advertise	agent	capabilities	and	authentication
requirements.

4.	 Phase	4:	Explore	OAuth	Token	Exchange	for	Advanced	Delegation:	For	complex	workflows	involving	delegation,	impersonation,	or	fine-grained	least
privilege,	implement	OAuth	2.0	Token	Exchange	(RFC	8693).	This	allows	agents	to	dynamically	adjust	their	permissions	based	on	task	context.

5.	 Phase	5:	Enhance	Application-Layer	Security:	For	highly	sensitive	interactions,	consider	implementing	application-layer	message	signing	(JWS)	and
encryption	(JWE)	to	provide	end-to-end	trust	and	confidentiality	beyond	transport-level	TLS.

7.2	Key	Architectural	Decisions	and	Best	Practices

Adopt	Least	Privilege:	Design	granular	scopes	for	agents	that	precisely	match	their	required	capabilities	and	delegated	authority.	Avoid	broad,	all-
encompassing	permissions.7
Use	Short-Lived	Tokens	and	Automated	Rotation: 	Implement	short	expiration	windows	for	access	tokens	(5-15	minutes)	and	automate	the	rotation	of	client
secrets	and	cryptographic	keys.9
Prioritize	Asymmetric	Client	Authentication:	Where	supported,	move	away	from	shared	client	secrets	to	more	secure	methods	like	Private	Key	JWTs	or
mTLS	for	agent	authentication.13
Define	Granular	Scopes	Aligned	with	Capabilities: 	Ensure	OAuth	scopes	reflect	the	agentâ€™s	advertised	capabilities	and	the	specific	delegated	authority,
allowing	for	dynamic	authorization	decisions	based	on	context.7
Consider	Authorization	Architecture	Trade-offs:	Evaluate	the	trade-offs	between	centralized	authorization	services	(for	consistency	and	simplified	policy
management)	and	distributed	enforcement	(for	resilience	and	low	latency)	based	on	the	specific	needs	of	the	agent	system.39	A	hybrid	approach,	leveraging	an
API	Gateway	for	initial	authentication	and	a	centralized	policy	engine	for	complex	authorization,	may	be	optimal.40

7.3	Monitoring,	Governance,	and	Compliance

Continuous	Monitoring	of	Token	Usage	and	Agent	Behavior:	Implement	robust	logging	and	real-time	monitoring	of	all	authentication	attempts,

authorization	decisions,	and	agent	actions.	Set	up	alerts	for	unusual	patterns	or	anomalous	behavior	that	could	indicate	a	compromise	or	misuse.9
Automated	Secret	Rotation: 	Automate	the	rotation	of	all	client	secrets	and	cryptographic	keys	used	by	agents	on	a	regular	schedule	to	minimize	the	impact	of
potential	compromises.9
Regular	Policy	Reviews	and	Automated	Tests:	Periodically	review	authorization	policies	and	agent	permissions.	Implement	automated	tests	to	ensure
policies	work	as	expected	and	that	Agent	Cards	expose	only	intended	capabilities.10
Data	Minimization	and	Encryption:	Apply	data-minimization	practices,	redact	sensitive	data	before	logging,	and	enforce	encryption	both	in	transit
(HTTPS/TLS,	JWE)	and	at	rest,	with	aggressive	retention	and	purge	policies.10

8.	Conclusion

The	integration	of	existing	OAuth	services	with	AI	agents	and	the	Agent2Agent	(A2A)	protocol	represents	a	critical	evolution	in	enterprise	security.	The	inherent
autonomy,	collaborative	nature,	and	delegated	authority	of	AI	agents	necessitate	a	departure	from	traditional	human-centric	or	static	machine	identity	models.	By
leveraging	OAuth	2.0â€™s	robust	M2M	capabilities,	particularly	the	Client	Credentials	flow,	organizations	can	establish	a	foundational	layer	of	secure	authentication
for	their	agents.

The	adoption	of	advanced	OAuth	patterns	like	Dynamic	Client	Registration	is	essential	for	scaling	agent	onboarding,	while	OAuth	Token	Exchange	provides	the
necessary	flexibility	for	managing	complex	delegation,	enforcing	least	privilege,	and	enabling	cross-domain	interactions	in	dynamic	multi-agent	workflows.
Furthermore,	the	A2A	protocolâ€™s	design,	with	its	â€œidentity-awareâ€​	principles	and	explicit	support	for	standard	authentication	schemes,	provides	a	clear	path
for	secure	and	interoperable	agent-to-agent	communication.	The	use	of	Agent	Cards	for	capability	advertisement	and	the	potential	for	application-layer	security
mechanisms	like	message	signing	and	encryption	further	strengthen	the	trust	framework.

While	challenges	remain,	particularly	in	managing	human-to-agent	delegation	and	securing	on-device	agents,	a	proactive	approach	to	identity	management,	rooted	in
established	OAuth	standards	and	adapted	to	the	unique	requirements	of	AI	agents,	is	paramount.	By	prioritizing	granular	permissions,	continuous	validation,	and
comprehensive	auditability,	organizations	can	build	scalable,	accountable,	and	resilient	multi-agent	systems	that	securely	unlock	the	transformative	potential	of
autonomous	AI.	This	strategic	approach	will	be	crucial	for	navigating	the	complexities	of	AI	governance	and	ensuring	the	safe	and	effective	deployment	of	agentic
solutions	in	the	enterprise.

Appendix	A:	Future	Research	Directions

A.1	Recommended	Extensions

Comprehensive	Threat	Model:	Detailed	analysis	of	attack	vectors	specific	to	autonomous	agent	ecosystems
Compliance	Framework	Mapping:	Alignment	of	agent	identity	practices	with	GDPR,	SOX,	HIPAA,	and	emerging	AI	regulations
Performance	Benchmarking:	Latency	and	throughput	analysis	of	OAuth	+	A2A	implementations	at	enterprise	scale

A.2	Emerging	Standards	to	Monitor

SD-JWT	for	Agent	Cards:	IETF	draft	development	and	standardization	timeline
OAuth	3.0	Evolution:	Next-generation	authorization	framework	considerations	for	agentic	systems
AI	Agent	Governance	Standards:	W3C	and	IEEE	working	groups	on	autonomous	system	governance

About	the	Author

Sebastian	Schkudlara	is	a	Software	Architect	with	over	19	years	of	experience	designing	scalable,	cloud-native	platforms	and	secure,	agentic	AI	systems.	He
specializes	in	OAuth-based	identity	frameworks,	large	language	model	orchestration,	and	event-driven	architectures	for	enterprise	environments.

Sebastian	has	led	transformative	technology	initiatives	across	logistics,	insurance,	and	developer	tooling	sectors,	with	recent	focus	on	building	multi-agent	ecosystems
and	intelligent	AI	proxies	that	optimize	cost	and	performance	across	diverse	model	providers.	His	expertise	encompasses	the	intersection	of	backend	engineering,
DevOps	practices,	and	AI	strategyâ€”positioning	him	uniquely	at	the	forefront	of	secure	AI	integration	in	modern	distributed	systems.

He	currently	builds	intelligent	AI	routing	and	optimization	platforms,	and	develops	marketplace	solutions	for	autonomous	AI	agents.	Sebastianâ€™s	work
consistently	bridges	the	gap	between	theoretical	AI	capabilities	and	practical	enterprise	implementation,	with	particular	emphasis	on	security,	scalability,	and
operational	excellence.

ðŸ”—	Connect:	LinkedIn	|	ðŸ“§	Contact:	For	enterprise	AI	architecture	consulting	and	speaking	engagements

Works	cited

1.	 en.wikipedia.org,	accessed	July	30,	2025,
https://en.wikipedia.org/wiki/Distributed_artificial_intelligence#:~:text=An%20agent%20is%20a%20virtual,agent%20alone%20could%20not%20achieve.

2.	 What	are	AI	agents?	Definition,	examples,	and	types	|	Google	Cloud,	accessed	July	30,	2025,	 https://cloud.google.com/discover/what-are-ai-agents
3.	 Agentic	AI	Identity	Management	Approach	|	CSA	-	Cloud	Security	Alliance,	accessed	July	30,	2025,
https://cloudsecurityalliance.org/blog/2025/03/11/agentic-ai-identity-management-approach

4.	 Authenticated	Delegation	and	Authorized	AI	Agents	-	arXiv,	accessed	July	30,	2025,	 https://arxiv.org/html/2501.09674v1
5.	 Agent	Authentication	in	AI	Systems	|	by	Lahiru	Gamage	-	Medium,	accessed	July	30,	2025,	 https://medium.com/@lahirugmg/agent-authentication-in-ai-
systems-a67008e47a09

6.	 Zero-Trust	Agents:	Adding	Identity	and	Access	to	Multi-Agent	Workflows,	accessed	July	30,	2025,	 https://techcommunity.microsoft.com/blog/azure-ai-
services-blog/zero-trust-agents-adding-identity-and-access-to-multi-agent-workflows/4427790

7.	 AI	agent	identity:	itâ€™s	just	OAuth	-	Maya	Kaczorowski,	accessed	July	30,	2025,	 https://mayakaczorowski.com/blogs/ai-agent-authentication
8.	 OAuth	Scopes	-	Genesys	Cloud	Developer	Center,	accessed	July	30,	2025,	 https://developer.genesys.cloud/api/rest/authorization/scopes.html
9.	 Machine-to-machine	identity	management	-	AWS	Prescriptive	Guidance,	accessed	July	30,	2025,	 https://docs.aws.amazon.com/prescriptive-
guidance/latest/security-reference-architecture/m2m-identity-management.html

10.	 Agent-2-Agent	Protocol	(A2A)	-	A	Deep	Dive	-	WWT,	accessed	July	30,	2025,	 https://www.wwt.com/blog/agent-2-agent-protocol-a2a-a-deep-dive
11.	 Agentic	AI	Communication	Protocols:	The	Backbone	of	Autonomous	Multi-Agent	Systems,	accessed	July	30,	2025,	 https://datasciencedojo.com/blog/agentic-

ai-communication-protocols/
12.	 Understanding	the	OAuth	2.0	Client	Credentials	flow	-	WorkOS,	accessed	July	30,	2025,	 https://workos.com/blog/client-credentials

https://linkedin.com/in/sebastian-schkudlara
https://en.wikipedia.org/wiki/Distributed_artificial_intelligence#:~:text=An%20agent%20is%20a%20virtual,agent%20alone%20could%20not%20achieve.
https://cloud.google.com/discover/what-are-ai-agents
https://cloudsecurityalliance.org/blog/2025/03/11/agentic-ai-identity-management-approach
https://arxiv.org/html/2501.09674v1
https://medium.com/@lahirugmg/agent-authentication-in-ai-systems-a67008e47a09
https://techcommunity.microsoft.com/blog/azure-ai-services-blog/zero-trust-agents-adding-identity-and-access-to-multi-agent-workflows/4427790
https://mayakaczorowski.com/blogs/ai-agent-authentication
https://developer.genesys.cloud/api/rest/authorization/scopes.html
https://docs.aws.amazon.com/prescriptive-guidance/latest/security-reference-architecture/m2m-identity-management.html
https://www.wwt.com/blog/agent-2-agent-protocol-a2a-a-deep-dive
https://datasciencedojo.com/blog/agentic-ai-communication-protocols/
https://workos.com/blog/client-credentials

13.	 OAuth	2.0	client	credentials	flow	on	the	Microsoft	identity	platform	â€¦,	accessed	July	30,	2025,	 https://learn.microsoft.com/en-us/entra/identity-platform/v2-
oauth2-client-creds-grant-flow

14.	 OAuth	M2M	in	a	nutshell	-	Orange	Developer,	accessed	July	30,	2025,	 https://developer.orange.com/resources/oauth-m2m-in-a-nutshell/
15.	 Client	Credentials	Flow	|	Curity	Identity	Server,	accessed	July	30,	2025,	 https://curity.io/resources/learn/client-credentials/
16.	 An	Expert	Guide	to	M2M	Authentication	&	Authorization	-	Infisign,	accessed	July	30,	2025,	 https://www.infisign.ai/blog/what-is-m2m-authentication-

authorization
17.	 JSON	Web	Token	Introduction	-	jwt.io,	accessed	July	30,	2025,	https://jwt.io/introduction
18.	 Securing	OAuth	2.0	M2M	tokens	in	B2B	SaaS	-	Scalekit,	accessed	July	30,	2025,	 https://www.scalekit.com/blog/securing-m2m-tokens-b2b-saas
19.	 OAuth	2	Refresh	Tokens:	A	Practical	Guide	-	Frontegg,	accessed	July	30,	2025,	 https://frontegg.com/blog/oauth-2-refresh-tokens
20.	 Dynamic	Client	Registration	in	OAuth2:	Its	role	in	agentic	auth	-	Scalekit,	accessed	July	30,	2025,	 https://www.scalekit.com/blog/dynamic-client-registration-

oauth2
21.	 JSON	Web	Token	-	Wikipedia,	accessed	July	30,	2025,	https://en.wikipedia.org/wiki/JSON_Web_Token
22.	 JSON	Web	Token	Claims	-	Auth0,	accessed	July	30,	2025,	https://auth0.com/docs/secure/tokens/json-web-tokens/json-web-token-claims
23.	 draft-nandakumar-agent-sd-jwt-00	-	Selective	Disclosure	for	Agent	Discovery	and	Identity	Management	(SD	-	Datatracker,	accessed	July	30,	2025,

https://datatracker.ietf.org/doc/draft-nandakumar-agent-sd-jwt/
24.	 What	Is	Agent2Agent	Protocol	(A2A)?	-	Solo.io,	accessed	July	30,	2025,	 https://www.solo.io/topics/ai-infrastructure/what-is-a2a
25.	 A2A	Protocol:	An	In-Depth	Guide.	The	Need	for	Agent	Interoperability	|	by	Saeed	Hajebi,	accessed	July	30,	2025,	 https://medium.com/@saeedhajebi/a2a-

protocol-an-in-depth-guide-78387f992f59
26.	 Building	A	Secure	Agentic	AI	Application	Leveraging	Googleâ€™s	A2A	Protocol	-	arXiv,	accessed	July	30,	2025,	 https://arxiv.org/html/2504.16902v1
27.	 Guest	Blog:	Building	Multi-Agent	Solutions	with	Semantic	Kernel	â€¦,	accessed	July	30,	2025,	 https://devblogs.microsoft.com/semantic-kernel/guest-blog-

building-multi-agent-solutions-with-semantic-kernel-and-a2a-protocol/
28.	 What	Every	AI	Engineer	Should	Know	About	A2A,	MCP	&	ACP	|	by	â€¦,	accessed	July	30,	2025,	 https://medium.com/@elisowski/what-every-ai-engineer-

should-know-about-a2a-mcp-acp-8335a210a742
29.	 MCP	and	ACP:	Decoding	the	language	of	models	and	agents	-	Outshift	|	Cisco,	accessed	July	30,	2025,	 https://outshift.cisco.com/blog/mcp-acp-decoding-

language-of-models-and-agents
30.	 What	is	Agent	Communication	Protocol	(ACP)?	-	IBM,	accessed	July	30,	2025,	 https://www.ibm.com/think/topics/agent-communication-protocol
31.	 What	is	Dynamic	Client	Registration?	-	Descope,	accessed	July	30,	2025,	 https://www.descope.com/learn/post/dynamic-client-registration
32.	 How	to	Use	Dynamic	Client	Registration	|	Curity,	accessed	July	30,	2025,	 https://curity.io/resources/learn/using-dynamic-client-registration/
33.	 Dynamic	Client	Registration	|	An	Overview	-	Curity,	accessed	July	30,	2025,	 https://curity.io/resources/learn/openid-connect-understanding-dcr/
34.	 Token	Exchange	in	OAuth:	Why	and	How	to	Implement	It	-	Curity	-	Medium,	accessed	July	30,	2025,	 https://curity.medium.com/token-exchange-in-oauth-

why-and-how-to-implement-it-a7407367cb55
35.	 OAuth	2.0	Token	Exchange	Customization	-	Curity,	accessed	July	30,	2025,	 https://curity.io/docs/idsvr/latest/developer-guide/oauth-service/oauth-token-

exchange.html
36.	 Application	Layer	Transport	Security	|	Google	Cloud,	accessed	July	30,	2025,	 https://cloud.google.com/docs/security/encryption-in-transit/application-layer-

transport-security
37.	 Message	Level	Encryption	-	Visa	Developer,	accessed	July	30,	2025,	https://developer.visa.com/pages/encryption_guide
38.	 ANP	Technical	White	Paper	-	Agent	Network	Protocolï¼ˆANPï¼‰,	accessed	July	30,	2025,	 https://agentnetworkprotocol.com/en/specs/01-

agentnetworkprotocol-technical-white-paper/
39.	 Service-to-service	authorization:	A	guide	to	non-user	principals	|	Cerbos,	accessed	July	30,	2025,	 https://www.cerbos.dev/blog/service-to-service-authorization
40.	 Best	Practices	for	Authorization	in	Microservices	-	Oso,	accessed	July	30,	2025,	 https://www.osohq.com/post/microservices-authorization-patterns

https://learn.microsoft.com/en-us/entra/identity-platform/v2-oauth2-client-creds-grant-flow
https://developer.orange.com/resources/oauth-m2m-in-a-nutshell/
https://curity.io/resources/learn/client-credentials/
https://www.infisign.ai/blog/what-is-m2m-authentication-authorization
https://jwt.io/introduction
https://www.scalekit.com/blog/securing-m2m-tokens-b2b-saas
https://frontegg.com/blog/oauth-2-refresh-tokens
https://www.scalekit.com/blog/dynamic-client-registration-oauth2
https://en.wikipedia.org/wiki/JSON_Web_Token
https://auth0.com/docs/secure/tokens/json-web-tokens/json-web-token-claims
https://datatracker.ietf.org/doc/draft-nandakumar-agent-sd-jwt/
https://www.solo.io/topics/ai-infrastructure/what-is-a2a
https://medium.com/@saeedhajebi/a2a-protocol-an-in-depth-guide-78387f992f59
https://arxiv.org/html/2504.16902v1
https://devblogs.microsoft.com/semantic-kernel/guest-blog-building-multi-agent-solutions-with-semantic-kernel-and-a2a-protocol/
https://medium.com/@elisowski/what-every-ai-engineer-should-know-about-a2a-mcp-acp-8335a210a742
https://outshift.cisco.com/blog/mcp-acp-decoding-language-of-models-and-agents
https://www.ibm.com/think/topics/agent-communication-protocol
https://www.descope.com/learn/post/dynamic-client-registration
https://curity.io/resources/learn/using-dynamic-client-registration/
https://curity.io/resources/learn/openid-connect-understanding-dcr/
https://curity.medium.com/token-exchange-in-oauth-why-and-how-to-implement-it-a7407367cb55
https://curity.io/docs/idsvr/latest/developer-guide/oauth-service/oauth-token-exchange.html
https://cloud.google.com/docs/security/encryption-in-transit/application-layer-transport-security
https://developer.visa.com/pages/encryption_guide
https://agentnetworkprotocol.com/en/specs/01-agentnetworkprotocol-technical-white-paper/
https://www.cerbos.dev/blog/service-to-service-authorization
https://www.osohq.com/post/microservices-authorization-patterns

	Integrating OAuth with AI Agents and the A2A Protocol for Secure Authentication and Authorization
	Executive Summary
	1. Introduction: Securing the Autonomous AI Agent Ecosystem
	1.1 The Rise of AI Agents and Multi-Agent Systems
	1.2 The Identity Challenge for Autonomous Agents
	1.3 Report Objectives and Scope

	2. Unique Identity Needs of AI Agents
	2.1 Core Characteristics and Their Security Implications
	2.2 Why Traditional Identity Models Fall Short for Agents
	2.3 Core Authentication and Authorization Requirements for Agents

	3. Leveraging Existing OAuth 2.0 for Machine-to-Machine (M2M) Agent Communication
	3.1 OAuth 2.0 Client Credentials Flow: The Foundation for Agent Identity
	3.2 Best Practices for Secure M2M OAuth Implementation
	3.2.1 Secure Client Credential Management
	3.2.2 Short-Lived Access Tokens and Rotation Strategies
	3.2.3 Asymmetric Client Authentication (Private Key JWT)

	3.3 JWT Claims for Agent Identity and Capabilities
	3.3.1 Standard Claims for Agent Identification
	3.3.2 Custom Claims for Granular Agent Context and Capabilities
	3.3.3 Exploring Selective Disclosure (SD-JWT) for Agent Cards

	3.4 Defining Granular Scopes for Agent Permissions

	4. Integrating with the Agent2Agent (A2A) Protocol for Interoperable Security
	4.1 A2A Protocol Overview: Enabling Seamless Agent Collaboration
	4.2 A2Aâ€™s Built-in Security Mechanisms and OAuth Alignment
	4.3 Agent Cards: Advertising Capabilities and Authentication Requirements
	4.4 A2A in Multi-Agent Systems: Secure Task Delegation and Communication
	4.5 Comparison with Related Protocols: A2A, MCP, and ACP

	5. Advanced Authentication and Authorization Patterns for Agentic Workflows
	5.1 Dynamic Client Registration (DCR): Automating Agent Onboarding at Scale
	5.2 OAuth 2.0 Token Exchange (RFC 8693): Enabling Delegation and Least Privilege
	5.3 Application-Layer Security: Message Signing and Encryption for Enhanced Trust
	5.4 Architectural Patterns for Agent Authorization: Centralized vs.Â Distributed
	Authorization Architecture Patterns Comparison

	6. Open Challenges and Future Considerations for Agent Identity Management
	6.1 Managing Human-to-Agent Delegation of Authority
	Delegation Flow Visualization

	6.2 Continuous Authentication and Authorization for Dynamic Agent Behavior
	6.3 Securing On-Device and Edge Agents
	6.4 Ensuring Auditability and Accountability in Autonomous Systems

	7. Recommendations and Implementation Roadmap
	7.1 OAuth + A2A Integration Lifecycle Flow
	7.2 Phased Approach for OAuth and A2A Integration
	7.2 Key Architectural Decisions and Best Practices
	7.3 Monitoring, Governance, and Compliance

	8. Conclusion
	Appendix A: Future Research Directions
	A.1 Recommended Extensions
	A.2 Emerging Standards to Monitor

	About the Author
	Works cited

